mmpose.models.backbones.rsn 源代码

import copy as cp

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, MaxPool2d, constant_init, kaiming_init,
                      normal_init)

from ..builder import BACKBONES
from .base_backbone import BaseBackbone


class RSB(nn.Module):
    """Residual Steps block for RSN. Paper ref: Cai et al. "Learning Delicate
    Local Representations for Multi-Person Pose Estimation" (ECCV 2020).

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        num_steps (int): Numbers of steps in RSB
        stride (int): stride of the block. Default: 1
        downsample (nn.Module): downsample operation on identity branch.
            Default: None.
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        expand_times (int): Times by which the in_channels are expanded.
            Default:26.
        res_top_channels (int): Number of channels of feature output by
            ResNet_top. Default:64.
    """

    expansion = 1

    def __init__(self,
                 in_channels,
                 out_channels,
                 num_steps=4,
                 stride=1,
                 downsample=None,
                 with_cp=False,
                 norm_cfg=dict(type='BN'),
                 expand_times=26,
                 res_top_channels=64):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        super().__init__()
        assert num_steps > 1
        self.in_channels = in_channels
        self.branch_channels = self.in_channels * expand_times
        self.branch_channels //= res_top_channels
        self.out_channels = out_channels
        self.stride = stride
        self.downsample = downsample
        self.with_cp = with_cp
        self.norm_cfg = norm_cfg
        self.num_steps = num_steps
        self.conv_bn_relu1 = ConvModule(
            self.in_channels,
            self.num_steps * self.branch_channels,
            kernel_size=1,
            stride=self.stride,
            padding=0,
            norm_cfg=self.norm_cfg,
            inplace=False)
        for i in range(self.num_steps):
            for j in range(i + 1):
                module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
                self.add_module(
                    module_name,
                    ConvModule(
                        self.branch_channels,
                        self.branch_channels,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        inplace=False))
        self.conv_bn3 = ConvModule(
            self.num_steps * self.branch_channels,
            self.out_channels * self.expansion,
            kernel_size=1,
            stride=1,
            padding=0,
            act_cfg=None,
            norm_cfg=self.norm_cfg,
            inplace=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        """Forward function."""

        identity = x
        x = self.conv_bn_relu1(x)
        spx = torch.split(x, self.branch_channels, 1)
        outputs = list()
        outs = list()
        for i in range(self.num_steps):
            outputs_i = list()
            outputs.append(outputs_i)
            for j in range(i + 1):
                if j == 0:
                    inputs = spx[i]
                else:
                    inputs = outputs[i][j - 1]
                if i > j:
                    inputs = inputs + outputs[i - 1][j]
                module_name = f'conv_bn_relu2_{i + 1}_{j + 1}'
                module_i_j = getattr(self, module_name)
                outputs[i].append(module_i_j(inputs))

            outs.append(outputs[i][i])
        out = torch.cat(tuple(outs), 1)
        out = self.conv_bn3(out)

        if self.downsample is not None:
            identity = self.downsample(identity)
        out = out + identity

        out = self.relu(out)

        return out


class Downsample_module(nn.Module):
    """Downsample module for RSN.

    Args:
        block (nn.Module): Downsample block.
        num_blocks (list): Number of blocks in each downsample unit.
        num_units (int): Numbers of downsample units. Default: 4
        has_skip (bool): Have skip connections from prior upsample
            module or not. Default:False
        num_steps (int): Number of steps in a block. Default:4
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        in_channels (int): Number of channels of the input feature to
            downsample module. Default: 64
        expand_times (int): Times by which the in_channels are expanded.
            Default:26.
    """

    def __init__(self,
                 block,
                 num_blocks,
                 num_steps=4,
                 num_units=4,
                 has_skip=False,
                 norm_cfg=dict(type='BN'),
                 in_channels=64,
                 expand_times=26):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        super().__init__()
        self.has_skip = has_skip
        self.in_channels = in_channels
        assert len(num_blocks) == num_units
        self.num_blocks = num_blocks
        self.num_units = num_units
        self.num_steps = num_steps
        self.norm_cfg = norm_cfg
        self.layer1 = self._make_layer(
            block,
            in_channels,
            num_blocks[0],
            expand_times=expand_times,
            res_top_channels=in_channels)
        for i in range(1, num_units):
            module_name = f'layer{i + 1}'
            self.add_module(
                module_name,
                self._make_layer(
                    block,
                    in_channels * pow(2, i),
                    num_blocks[i],
                    stride=2,
                    expand_times=expand_times,
                    res_top_channels=in_channels))

    def _make_layer(self,
                    block,
                    out_channels,
                    blocks,
                    stride=1,
                    expand_times=26,
                    res_top_channels=64):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = ConvModule(
                self.in_channels,
                out_channels * block.expansion,
                kernel_size=1,
                stride=stride,
                padding=0,
                norm_cfg=self.norm_cfg,
                act_cfg=None,
                inplace=True)

        units = list()
        units.append(
            block(
                self.in_channels,
                out_channels,
                num_steps=self.num_steps,
                stride=stride,
                downsample=downsample,
                norm_cfg=self.norm_cfg,
                expand_times=expand_times,
                res_top_channels=res_top_channels))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            units.append(
                block(
                    self.in_channels,
                    out_channels,
                    num_steps=self.num_steps,
                    expand_times=expand_times,
                    res_top_channels=res_top_channels))

        return nn.Sequential(*units)

    def forward(self, x, skip1, skip2):
        out = list()
        for i in range(self.num_units):
            module_name = f'layer{i + 1}'
            module_i = getattr(self, module_name)
            x = module_i(x)
            if self.has_skip:
                x = x + skip1[i] + skip2[i]
            out.append(x)
        out.reverse()

        return tuple(out)


class Upsample_unit(nn.Module):
    """Upsample unit for upsample module.

    Args:
        ind (int): Indicates whether to interpolate (>0) and whether to
           generate feature map for the next hourglass-like module.
        num_units (int): Number of units that form a upsample module. Along
            with ind and gen_cross_conv, nm_units is used to decide whether
            to generate feature map for the next hourglass-like module.
        in_channels (int): Channel number of the skip-in feature maps from
            the corresponding downsample unit.
        unit_channels (int): Channel number in this unit. Default:256.
        gen_skip: (bool): Whether or not to generate skips for the posterior
            downsample module. Default:False
        gen_cross_conv (bool): Whether to generate feature map for the next
            hourglass-like module. Default:False
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        out_channels (in): Number of channels of feature output by upsample
            module. Must equal to in_channels of downsample module. Default:64
    """

    def __init__(self,
                 ind,
                 num_units,
                 in_channels,
                 unit_channels=256,
                 gen_skip=False,
                 gen_cross_conv=False,
                 norm_cfg=dict(type='BN'),
                 out_channels=64):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        super().__init__()
        self.num_units = num_units
        self.norm_cfg = norm_cfg
        self.in_skip = ConvModule(
            in_channels,
            unit_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            norm_cfg=self.norm_cfg,
            act_cfg=None,
            inplace=True)
        self.relu = nn.ReLU(inplace=True)

        self.ind = ind
        if self.ind > 0:
            self.up_conv = ConvModule(
                unit_channels,
                unit_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_cfg=self.norm_cfg,
                act_cfg=None,
                inplace=True)

        self.gen_skip = gen_skip
        if self.gen_skip:
            self.out_skip1 = ConvModule(
                in_channels,
                in_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_cfg=self.norm_cfg,
                inplace=True)

            self.out_skip2 = ConvModule(
                unit_channels,
                in_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_cfg=self.norm_cfg,
                inplace=True)

        self.gen_cross_conv = gen_cross_conv
        if self.ind == num_units - 1 and self.gen_cross_conv:
            self.cross_conv = ConvModule(
                unit_channels,
                out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_cfg=self.norm_cfg,
                inplace=True)

    def forward(self, x, up_x):
        out = self.in_skip(x)

        if self.ind > 0:
            up_x = F.interpolate(
                up_x,
                size=(x.size(2), x.size(3)),
                mode='bilinear',
                align_corners=True)
            up_x = self.up_conv(up_x)
            out = out + up_x
        out = self.relu(out)

        skip1 = None
        skip2 = None
        if self.gen_skip:
            skip1 = self.out_skip1(x)
            skip2 = self.out_skip2(out)

        cross_conv = None
        if self.ind == self.num_units - 1 and self.gen_cross_conv:
            cross_conv = self.cross_conv(out)

        return out, skip1, skip2, cross_conv


class Upsample_module(nn.Module):
    """Upsample module for RSN.

    Args:
        unit_channels (int): Channel number in the upsample units.
            Default:256.
        num_units (int): Numbers of upsample units. Default: 4
        gen_skip (bool): Whether to generate skip for posterior downsample
            module or not. Default:False
        gen_cross_conv (bool): Whether to generate feature map for the next
            hourglass-like module. Default:False
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        out_channels (int): Number of channels of feature output by upsample
            module. Must equal to in_channels of downsample module. Default:64
    """

    def __init__(self,
                 unit_channels=256,
                 num_units=4,
                 gen_skip=False,
                 gen_cross_conv=False,
                 norm_cfg=dict(type='BN'),
                 out_channels=64):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        super().__init__()
        self.in_channels = list()
        for i in range(num_units):
            self.in_channels.append(RSB.expansion * out_channels * pow(2, i))
        self.in_channels.reverse()
        self.num_units = num_units
        self.gen_skip = gen_skip
        self.gen_cross_conv = gen_cross_conv
        self.norm_cfg = norm_cfg
        for i in range(num_units):
            module_name = f'up{i + 1}'
            self.add_module(
                module_name,
                Upsample_unit(
                    i,
                    self.num_units,
                    self.in_channels[i],
                    unit_channels,
                    self.gen_skip,
                    self.gen_cross_conv,
                    norm_cfg=self.norm_cfg,
                    out_channels=64))

    def forward(self, x):
        out = list()
        skip1 = list()
        skip2 = list()
        cross_conv = None
        for i in range(self.num_units):
            module_i = getattr(self, f'up{i + 1}')
            if i == 0:
                outi, skip1_i, skip2_i, _ = module_i(x[i], None)
            elif i == self.num_units - 1:
                outi, skip1_i, skip2_i, cross_conv = module_i(x[i], out[i - 1])
            else:
                outi, skip1_i, skip2_i, _ = module_i(x[i], out[i - 1])
            out.append(outi)
            skip1.append(skip1_i)
            skip2.append(skip2_i)
        skip1.reverse()
        skip2.reverse()

        return out, skip1, skip2, cross_conv


class Single_stage_RSN(nn.Module):
    """Single_stage Residual Steps Network.

    Args:
        unit_channels (int): Channel number in the upsample units. Default:256.
        num_units (int): Numbers of downsample/upsample units. Default: 4
        gen_skip (bool): Whether to generate skip for posterior downsample
            module or not. Default:False
        gen_cross_conv (bool): Whether to generate feature map for the next
            hourglass-like module. Default:False
        has_skip (bool): Have skip connections from prior upsample
            module or not. Default:False
        num_steps (int): Number of steps in RSB. Default: 4
        num_blocks (list): Number of blocks in each downsample unit.
            Default: [2, 2, 2, 2] Note: Make sure num_units==len(num_blocks)
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        in_channels (int): Number of channels of the feature from ResNet_Top.
            Default: 64.
        expand_times (int): Times by which the in_channels are expanded in RSB.
            Default:26.
    """

    def __init__(self,
                 has_skip=False,
                 gen_skip=False,
                 gen_cross_conv=False,
                 unit_channels=256,
                 num_units=4,
                 num_steps=4,
                 num_blocks=[2, 2, 2, 2],
                 norm_cfg=dict(type='BN'),
                 in_channels=64,
                 expand_times=26):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        num_blocks = cp.deepcopy(num_blocks)
        super().__init__()
        assert len(num_blocks) == num_units
        self.has_skip = has_skip
        self.gen_skip = gen_skip
        self.gen_cross_conv = gen_cross_conv
        self.num_units = num_units
        self.num_steps = num_steps
        self.unit_channels = unit_channels
        self.num_blocks = num_blocks
        self.norm_cfg = norm_cfg

        self.downsample = Downsample_module(RSB, num_blocks, num_steps,
                                            num_units, has_skip, norm_cfg,
                                            in_channels, expand_times)
        self.upsample = Upsample_module(unit_channels, num_units, gen_skip,
                                        gen_cross_conv, norm_cfg, in_channels)

    def forward(self, x, skip1, skip2):
        mid = self.downsample(x, skip1, skip2)
        out, skip1, skip2, cross_conv = self.upsample(mid)

        return out, skip1, skip2, cross_conv


class ResNet_top(nn.Module):
    """ResNet top for RSN.

    Args:
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
        channels (int): Number of channels of the feature output by ResNet_top.
    """

    def __init__(self, norm_cfg=dict(type='BN'), channels=64):
        # Protect mutable default arguments
        norm_cfg = cp.deepcopy(norm_cfg)
        super().__init__()
        self.top = nn.Sequential(
            ConvModule(
                3,
                channels,
                kernel_size=7,
                stride=2,
                padding=3,
                norm_cfg=norm_cfg,
                inplace=True), MaxPool2d(kernel_size=3, stride=2, padding=1))

    def forward(self, img):
        return self.top(img)


[文档]@BACKBONES.register_module() class RSN(BaseBackbone): """Residual Steps Network backbone. Paper ref: Cai et al. "Learning Delicate Local Representations for Multi-Person Pose Estimation" (ECCV 2020). Args: unit_channels (int): Number of Channels in an upsample unit. Default: 256 num_stages (int): Number of stages in a multi-stage RSN. Default: 4 num_units (int): NUmber of downsample/upsample units in a single-stage RSN. Default: 4 Note: Make sure num_units == len(self.num_blocks) num_blocks (list): Number of RSBs (Residual Steps Block) in each downsample unit. Default: [2, 2, 2, 2] num_steps (int): Number of steps in a RSB. Default:4 norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='BN') res_top_channels (int): Number of channels of feature from ResNet_top. Default: 64. expand_times (int): Times by which the in_channels are expanded in RSB. Default:26. Example: >>> from mmpose.models import RSN >>> import torch >>> self = RSN(num_stages=2,num_units=2,num_blocks=[2,2]) >>> self.eval() >>> inputs = torch.rand(1, 3, 511, 511) >>> level_outputs = self.forward(inputs) >>> for level_output in level_outputs: ... for feature in level_output: ... print(tuple(feature.shape)) ... (1, 256, 64, 64) (1, 256, 128, 128) (1, 256, 64, 64) (1, 256, 128, 128) """ def __init__(self, unit_channels=256, num_stages=4, num_units=4, num_blocks=[2, 2, 2, 2], num_steps=4, norm_cfg=dict(type='BN'), res_top_channels=64, expand_times=26): # Protect mutable default arguments norm_cfg = cp.deepcopy(norm_cfg) num_blocks = cp.deepcopy(num_blocks) super().__init__() self.unit_channels = unit_channels self.num_stages = num_stages self.num_units = num_units self.num_blocks = num_blocks self.num_steps = num_steps self.norm_cfg = norm_cfg assert self.num_stages > 0 assert self.num_steps > 1 assert self.num_units > 1 assert self.num_units == len(self.num_blocks) self.top = ResNet_top(norm_cfg=norm_cfg) self.multi_stage_rsn = nn.ModuleList([]) for i in range(self.num_stages): if i == 0: has_skip = False else: has_skip = True if i != self.num_stages - 1: gen_skip = True gen_cross_conv = True else: gen_skip = False gen_cross_conv = False self.multi_stage_rsn.append( Single_stage_RSN(has_skip, gen_skip, gen_cross_conv, unit_channels, num_units, num_steps, num_blocks, norm_cfg, res_top_channels, expand_times))
[文档] def forward(self, x): """Model forward function.""" out_feats = [] skip1 = None skip2 = None x = self.top(x) for i in range(self.num_stages): out, skip1, skip2, x = self.multi_stage_rsn[i](x, skip1, skip2) out_feats.append(out) return out_feats
[文档] def init_weights(self, pretrained=None): """Initialize model weights.""" for m in self.multi_stage_rsn.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) elif isinstance(m, nn.Linear): normal_init(m, std=0.01) for m in self.top.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m)