Source code for mmpose.core.evaluation.pose3d_eval

import numpy as np

from .mesh_eval import compute_similarity_transform


[docs]def keypoint_mpjpe(pred, gt, mask, alignment='none'): """Calculate the mean per-joint position error (MPJPE) and the error after rigid alignment with the ground truth (P-MPJPE). batch_size: N num_keypoints: K keypoint_dims: C Args: pred (np.ndarray[N, K, C]): Predicted keypoint location. gt (np.ndarray[N, K, C]): Groundtruth keypoint location. mask (np.ndarray[N, K]): Visibility of the target. False for invisible joints, and True for visible. Invisible joints will be ignored for accuracy calculation. alignment (str, optional): method to align the prediction with the groundtruth. Supported options are: - ``'none'``: no alignment will be applied - ``'scale'``: align in the least-square sense in scale - ``'procrustes'``: align in the least-square sense in scale, rotation and translation. Returns: tuple: A tuple containing joint position errors - mpjpe (float|np.ndarray[N]): mean per-joint position error. - p-mpjpe (float|np.ndarray[N]): mpjpe after rigid alignment with the ground truth """ assert mask.any() if alignment == 'none': pass elif alignment == 'procrustes': pred = np.stack([ compute_similarity_transform(pred_i, gt_i) for pred_i, gt_i in zip(pred, gt) ]) elif alignment == 'scale': pred_dot_pred = np.einsum('nkc,nkc->n', pred, pred) pred_dot_gt = np.einsum('nkc,nkc->n', pred, gt) scale_factor = pred_dot_gt / pred_dot_pred pred = pred * scale_factor[:, None, None] else: raise ValueError(f'Invalid value for alignment: {alignment}') error = np.linalg.norm(pred - gt, ord=2, axis=-1)[mask].mean() return error