Shortcuts

Source code for mmpose.models.losses.regression_loss

# Copyright (c) OpenMMLab. All rights reserved.
import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..builder import LOSSES
from ..utils.realnvp import RealNVP


[docs]@LOSSES.register_module() class RLELoss(nn.Module): """RLE Loss. `Human Pose Regression With Residual Log-Likelihood Estimation arXiv: <https://arxiv.org/abs/2107.11291>`_. Code is modified from `the official implementation <https://github.com/Jeff-sjtu/res-loglikelihood-regression>`_. Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. size_average (bool): Option to average the loss by the batch_size. residual (bool): Option to add L1 loss and let the flow learn the residual error distribution. q_dis (string): Option for the identity Q(error) distribution, Options: "laplace" or "gaussian" """ def __init__(self, use_target_weight=False, size_average=True, residual=True, q_dis='laplace'): super(RLELoss, self).__init__() self.size_average = size_average self.use_target_weight = use_target_weight self.residual = residual self.q_dis = q_dis self.flow_model = RealNVP()
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D*2]): Output regression, including coords and sigmas. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N, K, D]): Weights across different joint types. """ pred = output[:, :, :2] sigma = output[:, :, 2:4].sigmoid() error = (pred - target) / (sigma + 1e-9) # (B, K, 2) log_phi = self.flow_model.log_prob(error.reshape(-1, 2)) log_phi = log_phi.reshape(target.shape[0], target.shape[1], 1) log_sigma = torch.log(sigma).reshape(target.shape[0], target.shape[1], 2) nf_loss = log_sigma - log_phi if self.residual: assert self.q_dis in ['laplace', 'gaussian', 'strict'] if self.q_dis == 'laplace': loss_q = torch.log(sigma * 2) + torch.abs(error) else: loss_q = torch.log( sigma * math.sqrt(2 * math.pi)) + 0.5 * error**2 loss = nf_loss + loss_q else: loss = nf_loss if self.use_target_weight: assert target_weight is not None loss *= target_weight if self.size_average: loss /= len(loss) return loss.sum()
[docs]@LOSSES.register_module() class SmoothL1Loss(nn.Module): """SmoothL1Loss loss. Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight=False, loss_weight=1.): super().__init__() self.criterion = F.smooth_l1_loss self.use_target_weight = use_target_weight self.loss_weight = loss_weight
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N, K, D]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: loss = self.criterion(output, target) return loss * self.loss_weight
[docs]@LOSSES.register_module() class WingLoss(nn.Module): """Wing Loss. paper ref: 'Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks' Feng et al. CVPR'2018. Args: omega (float): Also referred to as width. epsilon (float): Also referred to as curvature. use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, omega=10.0, epsilon=2.0, use_target_weight=False, loss_weight=1.): super().__init__() self.omega = omega self.epsilon = epsilon self.use_target_weight = use_target_weight self.loss_weight = loss_weight # constant that smoothly links the piecewise-defined linear # and nonlinear parts self.C = self.omega * (1.0 - math.log(1.0 + self.omega / self.epsilon))
[docs] def criterion(self, pred, target): """Criterion of wingloss. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: pred (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. """ delta = (target - pred).abs() losses = torch.where( delta < self.omega, self.omega * torch.log(1.0 + delta / self.epsilon), delta - self.C) return torch.mean(torch.sum(losses, dim=[1, 2]), dim=0)
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N,K,D]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: loss = self.criterion(output, target) return loss * self.loss_weight
[docs]@LOSSES.register_module() class SoftWingLoss(nn.Module): """Soft Wing Loss 'Structure-Coherent Deep Feature Learning for Robust Face Alignment' Lin et al. TIP'2021. loss = 1. |x| , if |x| < omega1 2. omega2*ln(1+|x|/epsilon) + B, if |x| >= omega1 Args: omega1 (float): The first threshold. omega2 (float): The second threshold. epsilon (float): Also referred to as curvature. use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, omega1=2.0, omega2=20.0, epsilon=0.5, use_target_weight=False, loss_weight=1.): super().__init__() self.omega1 = omega1 self.omega2 = omega2 self.epsilon = epsilon self.use_target_weight = use_target_weight self.loss_weight = loss_weight # constant that smoothly links the piecewise-defined linear # and nonlinear parts self.B = self.omega1 - self.omega2 * math.log(1.0 + self.omega1 / self.epsilon)
[docs] def criterion(self, pred, target): """Criterion of wingloss. Note: batch_size: N num_keypoints: K dimension of keypoints: D (D=2 or D=3) Args: pred (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. """ delta = (target - pred).abs() losses = torch.where( delta < self.omega1, delta, self.omega2 * torch.log(1.0 + delta / self.epsilon) + self.B) return torch.mean(torch.sum(losses, dim=[1, 2]), dim=0)
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: batch_size: N num_keypoints: K dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N, K, D]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: loss = self.criterion(output, target) return loss * self.loss_weight
[docs]@LOSSES.register_module() class MPJPELoss(nn.Module): """MPJPE (Mean Per Joint Position Error) loss. Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight=False, loss_weight=1.): super().__init__() self.use_target_weight = use_target_weight self.loss_weight = loss_weight
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N,K,D]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = torch.mean( torch.norm((output - target) * target_weight, dim=-1)) else: loss = torch.mean(torch.norm(output - target, dim=-1)) return loss * self.loss_weight
[docs]@LOSSES.register_module() class L1Loss(nn.Module): """L1Loss loss .""" def __init__(self, use_target_weight=False, loss_weight=1.): super().__init__() self.criterion = F.l1_loss self.use_target_weight = use_target_weight self.loss_weight = loss_weight
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K Args: output (torch.Tensor[N, K, 2]): Output regression. target (torch.Tensor[N, K, 2]): Target regression. target_weight (torch.Tensor[N, K, 2]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: loss = self.criterion(output, target) return loss * self.loss_weight
[docs]@LOSSES.register_module() class MSELoss(nn.Module): """MSE loss for coordinate regression.""" def __init__(self, use_target_weight=False, loss_weight=1.): super().__init__() self.criterion = F.mse_loss self.use_target_weight = use_target_weight self.loss_weight = loss_weight
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K Args: output (torch.Tensor[N, K, 2]): Output regression. target (torch.Tensor[N, K, 2]): Target regression. target_weight (torch.Tensor[N, K, 2]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output * target_weight, target * target_weight) else: loss = self.criterion(output, target) return loss * self.loss_weight
[docs]@LOSSES.register_module() class BoneLoss(nn.Module): """Bone length loss. Args: joint_parents (list): Indices of each joint's parent joint. use_target_weight (bool): Option to use weighted bone loss. Different bone types may have different target weights. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, joint_parents, use_target_weight=False, loss_weight=1.): super().__init__() self.joint_parents = joint_parents self.use_target_weight = use_target_weight self.loss_weight = loss_weight self.non_root_indices = [] for i in range(len(self.joint_parents)): if i != self.joint_parents[i]: self.non_root_indices.append(i)
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N, K-1]): Weights across different bone types. """ output_bone = torch.norm( output - output[:, self.joint_parents, :], dim=-1)[:, self.non_root_indices] target_bone = torch.norm( target - target[:, self.joint_parents, :], dim=-1)[:, self.non_root_indices] if self.use_target_weight: assert target_weight is not None loss = torch.mean( torch.abs((output_bone * target_weight).mean(dim=0) - (target_bone * target_weight).mean(dim=0))) else: loss = torch.mean( torch.abs(output_bone.mean(dim=0) - target_bone.mean(dim=0))) return loss * self.loss_weight
[docs]@LOSSES.register_module() class SemiSupervisionLoss(nn.Module): """Semi-supervision loss for unlabeled data. It is composed of projection loss and bone loss. Paper ref: `3D human pose estimation in video with temporal convolutions and semi-supervised training` Dario Pavllo et al. CVPR'2019. Args: joint_parents (list): Indices of each joint's parent joint. projection_loss_weight (float): Weight for projection loss. bone_loss_weight (float): Weight for bone loss. warmup_iterations (int): Number of warmup iterations. In the first `warmup_iterations` iterations, the model is trained only on labeled data, and semi-supervision loss will be 0. This is a workaround since currently we cannot access epoch number in loss functions. Note that the iteration number in an epoch can be changed due to different GPU numbers in multi-GPU settings. So please set this parameter carefully. warmup_iterations = dataset_size // samples_per_gpu // gpu_num * warmup_epochs """ def __init__(self, joint_parents, projection_loss_weight=1., bone_loss_weight=1., warmup_iterations=0): super().__init__() self.criterion_projection = MPJPELoss( loss_weight=projection_loss_weight) self.criterion_bone = BoneLoss( joint_parents, loss_weight=bone_loss_weight) self.warmup_iterations = warmup_iterations self.num_iterations = 0
[docs] @staticmethod def project_joints(x, intrinsics): """Project 3D joint coordinates to 2D image plane using camera intrinsic parameters. Args: x (torch.Tensor[N, K, 3]): 3D joint coordinates. intrinsics (torch.Tensor[N, 4] | torch.Tensor[N, 9]): Camera intrinsics: f (2), c (2), k (3), p (2). """ while intrinsics.dim() < x.dim(): intrinsics.unsqueeze_(1) f = intrinsics[..., :2] c = intrinsics[..., 2:4] _x = torch.clamp(x[:, :, :2] / x[:, :, 2:], -1, 1) if intrinsics.shape[-1] == 9: k = intrinsics[..., 4:7] p = intrinsics[..., 7:9] r2 = torch.sum(_x[:, :, :2]**2, dim=-1, keepdim=True) radial = 1 + torch.sum( k * torch.cat((r2, r2**2, r2**3), dim=-1), dim=-1, keepdim=True) tan = torch.sum(p * _x, dim=-1, keepdim=True) _x = _x * (radial + tan) + p * r2 _x = f * _x + c return _x
[docs] def forward(self, output, target): losses = dict() self.num_iterations += 1 if self.num_iterations <= self.warmup_iterations: return losses labeled_pose = output['labeled_pose'] unlabeled_pose = output['unlabeled_pose'] unlabeled_traj = output['unlabeled_traj'] unlabeled_target_2d = target['unlabeled_target_2d'] intrinsics = target['intrinsics'] # projection loss unlabeled_output = unlabeled_pose + unlabeled_traj unlabeled_output_2d = self.project_joints(unlabeled_output, intrinsics) loss_proj = self.criterion_projection(unlabeled_output_2d, unlabeled_target_2d, None) losses['proj_loss'] = loss_proj # bone loss loss_bone = self.criterion_bone(unlabeled_pose, labeled_pose, None) losses['bone_loss'] = loss_bone return losses
[docs]@LOSSES.register_module() class SoftWeightSmoothL1Loss(nn.Module): """Smooth L1 loss with soft weight for regression. Args: use_target_weight (bool): Option to use weighted MSE loss. Different joint types may have different target weights. supervise_empty (bool): Whether to supervise the output with zero weight. beta (float): Specifies the threshold at which to change between L1 and L2 loss. loss_weight (float): Weight of the loss. Default: 1.0. """ def __init__(self, use_target_weight=False, supervise_empty=True, beta=1.0, loss_weight=1.): super().__init__() reduction = 'none' if use_target_weight else 'mean' self.criterion = partial( self.smooth_l1_loss, reduction=reduction, beta=beta) self.supervise_empty = supervise_empty self.use_target_weight = use_target_weight self.loss_weight = loss_weight
[docs] @staticmethod def smooth_l1_loss(input, target, reduction='none', beta=1.0): """Re-implement torch.nn.functional.smooth_l1_loss with beta to support pytorch <= 1.6.""" delta = input - target mask = delta.abs() < beta delta[mask] = (delta[mask]).pow(2) / (2 * beta) delta[~mask] = delta[~mask].abs() - beta / 2 if reduction == 'mean': return delta.mean() elif reduction == 'sum': return delta.sum() elif reduction == 'none': return delta else: raise ValueError(f'reduction must be \'mean\', \'sum\' or ' f'\'none\', but got \'{reduction}\'')
[docs] def forward(self, output, target, target_weight=None): """Forward function. Note: - batch_size: N - num_keypoints: K - dimension of keypoints: D (D=2 or D=3) Args: output (torch.Tensor[N, K, D]): Output regression. target (torch.Tensor[N, K, D]): Target regression. target_weight (torch.Tensor[N, K, D]): Weights across different joint types. """ if self.use_target_weight: assert target_weight is not None loss = self.criterion(output, target) * target_weight if self.supervise_empty: loss = loss.mean() else: num_elements = torch.nonzero(target_weight > 0).size()[0] loss = loss.sum() / max(num_elements, 1.0) else: loss = self.criterion(output, target) return loss * self.loss_weight
Read the Docs v: latest
Versions
latest
1.x
v0.14.0
fix-doc
cn_doc
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.