Shortcuts

Source code for mmpose.datasets.transforms.bottomup_transforms

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple

import cv2
import numpy as np
import xtcocotools.mask as cocomask
from mmcv.image import imflip_, imresize
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from scipy.stats import truncnorm

from mmpose.registry import TRANSFORMS
from mmpose.structures.bbox import get_udp_warp_matrix, get_warp_matrix


[docs]@TRANSFORMS.register_module() class BottomupGetHeatmapMask(BaseTransform): """Generate the mask of valid regions from the segmentation annotation. Required Keys: - img_shape - invalid_segs (optional) - warp_mat (optional) - flip (optional) - flip_direction (optional) - heatmaps (optional) Added Keys: - heatmap_mask """ def _segs_to_mask(self, segs: list, img_shape: Tuple[int, int]) -> np.ndarray: """Calculate mask from object segmentations. Args: segs (List): The object segmentation annotations in COCO format img_shape (Tuple): The image shape in (h, w) Returns: np.ndarray: The binary object mask in size (h, w), where the object pixels are 1 and background pixels are 0 """ # RLE is a simple yet efficient format for storing binary masks. # details can be found at `COCO tools <https://github.com/ # cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/ # mask.py>`__ rles = [] for seg in segs: rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1]) if isinstance(rle, list): # For non-crowded objects (e.g. human with no visible # keypoints), the results is a list of rles rles.extend(rle) else: # For crowded objects, the result is a single rle rles.append(rle) if rles: mask = cocomask.decode(cocomask.merge(rles)) else: mask = np.zeros(img_shape, dtype=np.uint8) return mask
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupGetHeatmapMask` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ invalid_segs = results.get('invalid_segs', []) img_shape = results['img_shape'] # (img_h, img_w) input_size = results['input_size'] # Calculate the mask of the valid region by negating the segmentation # mask of invalid objects mask = 1 - self._segs_to_mask(invalid_segs, img_shape) # Apply an affine transform to the mask if the image has been # transformed if 'warp_mat' in results: warp_mat = results['warp_mat'] mask = mask.astype(np.float32) mask = cv2.warpAffine( mask, warp_mat, input_size, flags=cv2.INTER_LINEAR) # Flip the mask if the image has been flipped if results.get('flip', False): flip_dir = results['flip_direction'] if flip_dir is not None: mask = imflip_(mask, flip_dir) # Resize the mask to the same size of heatmaps if 'heatmaps' in results: heatmaps = results['heatmaps'] if isinstance(heatmaps, list): # Multi-level heatmaps heatmap_mask = [] for hm in results['heatmaps']: h, w = hm.shape[1:3] _mask = imresize( mask, size=(w, h), interpolation='bilinear') heatmap_mask.append(_mask) else: h, w = heatmaps.shape[1:3] heatmap_mask = imresize( mask, size=(w, h), interpolation='bilinear') else: heatmap_mask = mask # Binarize the mask(s) if isinstance(heatmap_mask, list): results['heatmap_mask'] = [hm > 0.5 for hm in heatmap_mask] else: results['heatmap_mask'] = heatmap_mask > 0.5 return results
[docs]@TRANSFORMS.register_module() class BottomupRandomAffine(BaseTransform): r"""Randomly shift, resize and rotate the image. Required Keys: - img - img_shape - keypoints (optional) Modified Keys: - img - keypoints (optional) Added Keys: - input_size - warp_mat Args: input_size (Tuple[int, int]): The input image size of the model in [w, h] shift_factor (float): Randomly shift the image in range :math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions, where :math:`dx(y) = img_w(h) \cdot shift_factor` in pixels. Defaults to 0.2 shift_prob (float): Probability of applying random shift. Defaults to 1.0 scale_factor (Tuple[float, float]): Randomly resize the image in range :math:`[scale_factor[0], scale_factor[1]]`. Defaults to (0.75, 1.5) scale_prob (float): Probability of applying random resizing. Defaults to 1.0 scale_type (str): wrt ``long`` or ``short`` length of the image. Defaults to ``short`` rotate_factor (float): Randomly rotate the bbox in :math:`[-rotate_factor, rotate_factor]` in degrees. Defaults to 40.0 use_udp (bool): Whether use unbiased data processing. See `UDP (CVPR 2020)`_ for details. Defaults to ``False`` .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524 """ def __init__(self, input_size: Tuple[int, int], shift_factor: float = 0.2, shift_prob: float = 1., scale_factor: Tuple[float, float] = (0.75, 1.5), scale_prob: float = 1., scale_type: str = 'short', rotate_factor: float = 30., rotate_prob: float = 1, use_udp: bool = False) -> None: super().__init__() self.input_size = input_size self.shift_factor = shift_factor self.shift_prob = shift_prob self.scale_factor = scale_factor self.scale_prob = scale_prob self.scale_type = scale_type self.rotate_factor = rotate_factor self.rotate_prob = rotate_prob self.use_udp = use_udp @staticmethod def _truncnorm(low: float = -1., high: float = 1., size: tuple = ()) -> np.ndarray: """Sample from a truncated normal distribution.""" return truncnorm.rvs(low, high, size=size).astype(np.float32) def _fix_aspect_ratio(self, scale: np.ndarray, aspect_ratio: float): """Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, ) """ w, h = scale if w > h * aspect_ratio: if self.scale_type == 'long': _w, _h = w, w / aspect_ratio elif self.scale_type == 'short': _w, _h = h * aspect_ratio, h else: raise ValueError(f'Unknown scale type: {self.scale_type}') else: if self.scale_type == 'short': _w, _h = w, w / aspect_ratio elif self.scale_type == 'long': _w, _h = h * aspect_ratio, h else: raise ValueError(f'Unknown scale type: {self.scale_type}') return np.array([_w, _h], dtype=scale.dtype) @cache_randomness def _get_transform_params(self) -> Tuple: """Get random transform parameters. Returns: tuple: - offset (np.ndarray): Image offset rate in shape (2, ) - scale (np.ndarray): Image scaling rate factor in shape (1, ) - rotate (np.ndarray): Image rotation degree in shape (1, ) """ # get offset if np.random.rand() < self.shift_prob: offset = self._truncnorm(size=(2, )) * self.shift_factor else: offset = np.zeros((2, ), dtype=np.float32) # get scale if np.random.rand() < self.scale_prob: scale_min, scale_max = self.scale_factor scale = scale_min + (scale_max - scale_min) * ( self._truncnorm(size=(1, )) + 1) / 2 else: scale = np.ones(1, dtype=np.float32) # get rotation if np.random.rand() < self.rotate_prob: rotate = self._truncnorm() * self.rotate_factor else: rotate = 0 return offset, scale, rotate
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupRandomAffine` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ img_h, img_w = results['img_shape'] w, h = self.input_size offset_rate, scale_rate, rotate = self._get_transform_params() offset = offset_rate * [img_w, img_h] scale = scale_rate * [img_w, img_h] # adjust the scale to match the target aspect ratio scale = self._fix_aspect_ratio(scale, aspect_ratio=w / h) if self.use_udp: center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2], dtype=np.float32) warp_mat = get_udp_warp_matrix( center=center + offset, scale=scale, rot=rotate, output_size=(w, h)) else: center = np.array([img_w / 2, img_h / 2], dtype=np.float32) warp_mat = get_warp_matrix( center=center + offset, scale=scale, rot=rotate, output_size=(w, h)) # warp image and keypoints results['img'] = cv2.warpAffine( results['img'], warp_mat, (int(w), int(h)), flags=cv2.INTER_LINEAR) if 'keypoints' in results: # Only transform (x, y) coordinates results['keypoints'][..., :2] = cv2.transform( results['keypoints'][..., :2], warp_mat) if 'bbox' in results: bbox = np.tile(results['bbox'], 2).reshape(-1, 4, 2) # corner order: left_top, left_bottom, right_top, right_bottom bbox[:, 1:3, 0] = bbox[:, 0:2, 0] results['bbox'] = cv2.transform(bbox, warp_mat).reshape(-1, 8) results['input_size'] = self.input_size results['warp_mat'] = warp_mat return results
[docs]@TRANSFORMS.register_module() class BottomupResize(BaseTransform): """Resize the image to the input size of the model. Optionally, the image can be resized to multiple sizes to build a image pyramid for multi-scale inference. Required Keys: - img - ori_shape Modified Keys: - img - img_shape Added Keys: - input_size - warp_mat - aug_scale Args: input_size (Tuple[int, int]): The input size of the model in [w, h]. Note that the actually size of the resized image will be affected by ``resize_mode`` and ``size_factor``, thus may not exactly equals to the ``input_size`` aug_scales (List[float], optional): The extra input scales for multi-scale testing. If given, the input image will be resized to different scales to build a image pyramid. And heatmaps from all scales will be aggregated to make final prediction. Defaults to ``None`` size_factor (int): The actual input size will be ceiled to a multiple of the `size_factor` value at both sides. Defaults to 16 resize_mode (str): The method to resize the image to the input size. Options are: - ``'fit'``: The image will be resized according to the relatively longer side with the aspect ratio kept. The resized image will entirely fits into the range of the input size - ``'expand'``: The image will be resized according to the relatively shorter side with the aspect ratio kept. The resized image will exceed the given input size at the longer side use_udp (bool): Whether use unbiased data processing. See `UDP (CVPR 2020)`_ for details. Defaults to ``False`` .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524 """ def __init__(self, input_size: Tuple[int, int], aug_scales: Optional[List[float]] = None, size_factor: int = 32, resize_mode: str = 'fit', use_udp: bool = False): super().__init__() self.input_size = input_size self.aug_scales = aug_scales self.resize_mode = resize_mode self.size_factor = size_factor self.use_udp = use_udp @staticmethod def _ceil_to_multiple(size: Tuple[int, int], base: int): """Ceil the given size (tuple of [w, h]) to a multiple of the base.""" return tuple(int(np.ceil(s / base) * base) for s in size) def _get_input_size(self, img_size: Tuple[int, int], input_size: Tuple[int, int]) -> Tuple: """Calculate the actual input size (which the original image will be resized to) and the padded input size (which the resized image will be padded to, or which is the size of the model input). Args: img_size (Tuple[int, int]): The original image size in [w, h] input_size (Tuple[int, int]): The expected input size in [w, h] Returns: tuple: - actual_input_size (Tuple[int, int]): The target size to resize the image - padded_input_size (Tuple[int, int]): The target size to generate the model input which will contain the resized image """ img_w, img_h = img_size ratio = img_w / img_h if self.resize_mode == 'fit': padded_input_size = self._ceil_to_multiple(input_size, self.size_factor) if padded_input_size != input_size: raise ValueError( 'When ``resize_mode==\'fit\', the input size (height and' ' width) should be mulitples of the size_factor(' f'{self.size_factor}) at all scales. Got invalid input ' f'size {input_size}.') pad_w, pad_h = padded_input_size rsz_w = min(pad_w, pad_h * ratio) rsz_h = min(pad_h, pad_w / ratio) actual_input_size = (rsz_w, rsz_h) elif self.resize_mode == 'expand': _padded_input_size = self._ceil_to_multiple( input_size, self.size_factor) pad_w, pad_h = _padded_input_size rsz_w = max(pad_w, pad_h * ratio) rsz_h = max(pad_h, pad_w / ratio) actual_input_size = (rsz_w, rsz_h) padded_input_size = self._ceil_to_multiple(actual_input_size, self.size_factor) else: raise ValueError(f'Invalid resize mode {self.resize_mode}') return actual_input_size, padded_input_size
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupResize` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] img_h, img_w = results['ori_shape'] w, h = self.input_size input_sizes = [(w, h)] if self.aug_scales: input_sizes += [(int(w * s), int(h * s)) for s in self.aug_scales] imgs = [] for i, (_w, _h) in enumerate(input_sizes): actual_input_size, padded_input_size = self._get_input_size( img_size=(img_w, img_h), input_size=(_w, _h)) if self.use_udp: center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2], dtype=np.float32) scale = np.array([img_w, img_h], dtype=np.float32) warp_mat = get_udp_warp_matrix( center=center, scale=scale, rot=0, output_size=actual_input_size) else: center = np.array([img_w / 2, img_h / 2], dtype=np.float32) scale = np.array([ img_w * padded_input_size[0] / actual_input_size[0], img_h * padded_input_size[1] / actual_input_size[1] ], dtype=np.float32) warp_mat = get_warp_matrix( center=center, scale=scale, rot=0, output_size=padded_input_size) _img = cv2.warpAffine( img, warp_mat, padded_input_size, flags=cv2.INTER_LINEAR) imgs.append(_img) # Store the transform information w.r.t. the main input size if i == 0: results['img_shape'] = padded_input_size[::-1] results['input_center'] = center results['input_scale'] = scale results['input_size'] = padded_input_size if self.aug_scales: results['img'] = imgs results['aug_scales'] = self.aug_scales else: results['img'] = imgs[0] results['aug_scale'] = None return results
Read the Docs v: fix-doc
Versions
latest
1.x
v0.14.0
fix-doc
cn_doc
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.